逻辑斯蒂回归对鸾尾花进行分类

Sigmoid函数

逻辑回归也被称为广义线性回归模型,它与线性回归模型的形式基本上相同,都具有 ax+b,其中a和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将ax+b作为因变量,即y = ax+b,而logistic回归则通过函数S将ax+b对应到一个隐状态p,p = S(ax+b),然后根据p与1-p的大小决定因变量的值。这里的函数S就是Sigmoid函数
enter image description here
enter image description here

IRIS数据集介绍

Iris也称鸢尾花卉数据集,是常用的分类实验数据集,由R.A. Fisher于1936年收集整理的。其中包含3种植物种类,分别是山鸢尾(setosa)变色鸢尾(versicolor)和维吉尼亚鸢尾(virginica),每类50个样本,共150个样本。

该数据集包含4个特征变量,1个类别变量。iris每个样本都包含了4个特征:花萼长度,花萼宽度,花瓣长度,花瓣宽度,以及1个类别变量(label)。我们需要建立一个分类器,分类器可以通过这4个特征来预测鸢尾花卉种类是属于山鸢尾,变色鸢尾还是维吉尼亚鸢尾。其中有一个类别是线性可分的,其余两个类别线性不可分,这在最后的分类结果绘制图中可观察到。

导入所需的包

1
2
3
4
5
6
7
8
import numpy as np
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn import preprocessing
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline

pandas进行数据预处理

1
2
3
4
5
6
7
8
data = pd.read_csv(path, header=None)
iris_types = data[4].unique()
for i, type in enumerate(iris_types):
data.set_value(data[4] == type, 4, i)
x, y = np.split(data.values, (4,), axis=1)
x = x.astype(np.float)
y = y.astype(np.int)
# 仅使用前两列特征

导入模型,调用逻辑回归LogisticRegression()函数。

训练LogisticRegression分类器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
x = x[:, :2]
lr = Pipeline([('sc', StandardScaler()),
('clf', LogisticRegression()) ])
lr.fit(x, y.ravel())
y_hat = lr.predict(x)
y_hat_prob = lr.predict_proba(x)
np.set_printoptions(suppress=True)
print ('y_hat = \n', y_hat)
print ('y_hat_prob = \n', y_hat_prob)
print (u'准确度:%.2f%%' % (100*np.mean(y_hat == y.ravel())))
# 画图
N, M = 500, 500 # 横纵各采样多少个值
x1_min, x1_max = x[:, 0].min(), x[:, 0].max() # 第0列的范围
x2_min, x2_max = x[:, 1].min(), x[:, 1].max() # 第1列的范围
t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)
x1, x2 = np.meshgrid(t1, t2) # 生成网格采样点
x_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点

训练结果可视化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
mpl.rcParams['font.sans-serif'] = [u'simHei']
mpl.rcParams['axes.unicode_minus'] = False
cm_light = mpl.colors.ListedColormap(['#77E0A0', '#FF8080', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
y_hat = lr.predict(x_test) # 预测值
y_hat = y_hat.reshape(x1.shape) # 使之与输入的形状相同
plt.figure(facecolor='w')
plt.pcolormesh(x1, x2, y_hat, cmap=cm_light) # 预测值的显示
plt.scatter(x[:, 0], x[:, 1], c=np.squeeze(y), edgecolors='k', s=50, cmap=cm_dark) # 样本的显示
plt.xlabel(u'花萼长度', fontsize=14)
plt.ylabel(u'花萼宽度', fontsize=14)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.grid()
plt.title(u'鸢尾花Logistic回归分类效果 - 标准化', fontsize=17)
plt.show()

enter image description here

× 请我吃糖~
打赏二维码